point to face polarity, can establish the corners of a cube. Two other positions of a tetrahedron, also in polarity, define the corners of an octahedron. These three simpler Platonic Solids—the tetrahedron, the cube, and octahedron—represent the bilateral forms of the geometric progression. The cube in five positions, in rotation, defines the twenty corners of the dodecahedron, and five positions of the octahedron, again in rotation, establish the twelve corners of the icosahedron. The tetrahedron in four positions, with rotational ordering, also defines the twelve corners of the icosahedron and, in addition, one corner of each of the four positions extend beyond the icosahedron to form the corners of a larger tetrahedron, disclosing a ‘vestigial’ polarity in this arrangement. These more complex of the Platonic Solids, the dodecahedron and icosahedron, represent the stage of rotational forms in the geometric progression and, in the way they are formed, express Divine Proportion ratios (1:1.618) in their relation to the simpler solids, the dodecahedron to the cube and the icosahedron to the octahedron.

The ‘fourth dimensional’ extension of these rotational forms along an axis perpendicular to the radius of rotation, expressing again the tension of polarity, defines the helical forms of the geometric progression. Since both of the rotational forms have pentagonal symmetry around a center, the plan of their helical extensions is based on the decagon with its side in Divine Proportion to its ‘radius’ (of the circumscribed circle). The vertical extension of each turn is in Divine Proportion ratio to the side of the decagon, making a Divine Proportion—vertical turn = ϕ, horizontal turn = ϕ^2, and radius of turn = ϕ^3.