CYGRA 4 was not born out of a decree of the University of Montreal but rather by the will of a group of individuals who shared dreams and synergized them into reality and videotapes at the occasion of the Free Video Festival at McGill in March 1971.

Later on the group received official recognition from the University as a service, the mission of which is to develop educational video and film loops for the academic community. The video and cinema facilities are provided by the Audio-Visual Department of the U de M, the computer facilities by the Centre de Calcul.

CYGRA 4 is currently designing new graphic softwares and working in close collaboration with a technology-oriented artist. This latter experience is quite stimulating and rewarding for both parts. Moreover, we believe that, as Marshall McLuhan would say in his forthcoming book “The executive as dropout”, “every artist makes breakthroughs as soon as he meets a difficulty.”

The tape we produced for the Free Video Festival was a 7 minutes one with two sequences “Ove” and “Stars” which consist in computer animation of intricate and always changing geometric patterns. At one moment a star that seems to be two-dimensional begins to turn in space and reveals itself to be a three-dimensional volume with ever evolving curves. It is just possible to describe in words but it’s really a trip.

It took approximately 20 hours of work (starting from the brain cells and ending in the videorecorder) to prepare the computer animated tape shown at McGill. As for video-animation (opposed to film) we cannot work frame by frame, what we do is prepare the various basic pictures of the program on the screen of the computer and determine their order of appearance. Then the computer is programmed to bridge the gaps and calculate the intermediary pictures according to the number of steps that we assign for each basic picture to evolve into the next one. The cards are punched and as soon as everything is debugged, a computer tape is prepared by the machine. Now, if we would feed directly the bits from this tape to the digigraphic screen of the CDC 1700, the Lamarckian between two consecutive frames would be far too important to give an animation effect in video. Therefore we have to firstly transfer the information into a disc memory which in turn will feed it in real time to the computer screen in front of which stands an ordinary Sony camera and a VTR. We have to use a one-inch tape as a montage will have to be made, because the memory of our disc does not allow us to shoot more than two minutes in a go.

On our “free” (artistic oriented) videos, we have music which is also made by computer through our friend Denis Lorrain of the Informatique-Musique Group. For the future we seek a cybernetic means to prepare the computer animated tape shown at McGill in March 1971. We are going to use a video camera to record movements in an animation sequence and decide for instance that we need more intermediary rame in a certain part of the program. Just one more thing: we have a lot of fun with the computer (la babasse) and plan to have more in a certain part of the program.

The cards are punched and as soon as everything is debugged, a computer tape is prepared by the machine. Now, if we would feed directly the bits from this tape to the digigraphic screen of the CDC 1700, the Lamarckian between two consecutive frames would be far too important to give an animation effect in video. Therefore we have to firstly transfer the information into a disc memory which in turn will feed it in real time to the computer screen in front of which stands an ordinary Sony camera and a VTR. We have to use a one-inch tape as a montage will have to be made, because the memory of our disc does not allow us to shoot more than two minutes in a go.

On our “free” (artistic oriented) videos, we have music which is also made by computer through our friend Denis Lorrain of the Informatique-Musique Group. For the future we seek a cybernetic means to prepare the computer animated tape shown at McGill in March 1971. We are going to use a video camera to record movements in an animation sequence and decide for instance that we need more intermediary rame in a certain part of the program. Just one more thing: we have a lot of fun with the computer (la babasse) and plan to have more in a certain part of the program.

The cards are punched and as soon as everything is debugged, a computer tape is prepared by the machine. Now, if we would feed directly the bits from this tape to the digigraphic screen of the CDC 1700, the Lamarckian between two consecutive frames would be far too important to give an animation effect in video. Therefore we have to firstly transfer the information into a disc memory which in turn will feed it in real time to the computer screen in front of which stands an ordinary Sony camera and a VTR. We have to use a one-inch tape as a montage will have to be made, because the memory of our disc does not allow us to shoot more than two minutes in a go.

On our “free” (artistic oriented) videos, we have music which is also made by computer through our friend Denis Lorrain of the Informatique-Musique Group. For the future we seek a cybernetic means to prepare the computer animated tape shown at McGill in March 1971. We are going to use a video camera to record movements in an animation sequence and decide for instance that we need more intermediary rame in a certain part of the program. Just one more thing: we have a lot of fun with the computer (la babasse) and plan to have more in a certain part of the program.